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Abstract

The description of a multifluid code with anomalous transport

coefficients due to plasma instabilities self consistently followed

in space and time is given. As an example we present simulations of

colliding solar wind streamers. The results compare favorably with

the observations.
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I. Introduction

Anomalous transport due to plasma microinstabilities has long

been known to be of extreme importance in understanding the observations

of the solar wind plasma.' Most theoretical approaches have been

directed towards the understanding of phenomena that can possibly be

caused by instabilities or plasma processes2 (ion heating, anomalous

wave damping, etc.). Such analytic treatments can provide a rough

estimate of the observations and may constitute a useful and necessary

first step, but they will ultimately break down because many different

plasma effects are acting at once and these effects are not evolving

in a static spatially uniform plasma as is usually assumed in these

approaches. The macroscopic properties and plasma microprocesses evolve

together, feeding back into one.another, and a self-consistent model

is necessary if the highly non-linear interplay of the interactions is

to be described properly.

An increased understanding of the non-linear theory of instabilities

and recent developments in computational techniques at NRL have made it'.

possible to develop codes that can perform such tasks. These have been

applied successfully to C.T.R. and laboratory shock problems.3  In

this note we describe such a model, which has considerable flexibility

for application to solar wind problems. As an example we shall simulate

the interaction of colliding solar wind streams.

II. Model

The model consists of a set of multifluid equations, to be

integrated numerically, which self-consistently include the effects of
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wave-particle interactions through anomalous transport terms. These

terms depend on the instabilities present and evolve in time and space

as the macroscopic plasma parameters evolve. Although two dimensional

models are presently available at NRL, we restrict ourselves for sim-

plicity to a ID set of equations in Cartesian geometry. Each fluid

(j) is characterized by its drift velocity u., its temperature T.,

and its density n. which are functions of space and time. In addition,

we follow the evolution of the magnetic field B and the electric field

E. The coupled set of equations can be written:

bt j bx (jj) (I))

b eu. ( u. x B b
(njuj) = (njujE ) + (n.T)bt ) =  bx + Z m. c m. bx

bn.u

oj jcY (U \ t .A

T. - (u.T.) - (y-2) T u. + (u _-u)bt bx j j bx aJa a-

T -T. Radiation Losses, -bT
+ - External Sources, - - I (5)

Q1 T Thet
cj Thermal Conduction, b A

Etc.
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1 m
E = - (v x B) - V CneT (u.-v ) (5)- C e ene ee e 3 ej j e

n = 8 njZj (6)

bB
b = - c (VxE) (7)

V Vj (B,n,T,u, , Tj, uj) (8)

Without the terms bnjt A and - ij , equations (1-8) are simply
SA A

a nmultifluid description of the system coupled collisionally via

V., Tja given by the usual Spitzer values. In equation (3) one can

insert any sources or sinks of energy the particular model may require,

as well as thermal conduction. The terms b- j J F bT
bt A L A

represent the effects of anomalous (collective)'processes and the

prescription employed in the code should be derived from independent

non-linear calculations. We have performed such work for situations

where electrons and various ion species stream through each other.

The results have been reported in Ref. 4. In this code we have include'd

effects of the magnetized ion-ion two stream instability, the modified

two-stream instability and the beam cyclotron instability. For these

instabilities, the momentum transfer terms take the form

b n.u.1 i P (vv (p/p

t Ion Ion O.11H ni. (v -v.) F1 (p iP)
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Two Stream e
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and the heating terms take the form:
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where the subscript i refers to the ith ion species,

j to the jth ion species and e to the electrons. PT is the total mass

density, OH the lower hybrid frequency, wpe is the electron plasma

frequency, and Fl and F2 (Pi/p.) are factors of order unity.

These instabilities operate when local conditions are favorable.

The criteria for these instabilities are as follows:

(ij) 125 ( + neT e

Ion-Ion Instability

kB Ti kT
And < (v " )2

3. j

(v.v ) < + n T
3 e pT k45 el e

kBT Modified Two-Stream

m. < (v.i-v )2

kT e  n.

m. n (i e
I e

n. Beam Cyclotron
T 7 > 6.25 T.

e n 1
e

Most of the ion heating in the simulations to be described will be

due to the ion-ion instability.
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III. Macrostructure of Colliding Streamers

Using the above model, we proceeded to simunlate the regions in

the interplanetary plasma where fast plasma streams collide with.slower

ones. 5 We employed a three fluid model, one fluid representing the

fast streaming ions, one the slow ions, and one the electrons. The

simulation was performed in the reference frame of the slower moving

plasma, and the initial configuration is shown in Figure 1. Figures 2

and 3 show the subsequent evolution in time and space, and the agree-

merit with reported measurements is remarkable. In order to demonstrate

the effects of the anomalous terms, we equated them to zero in an

otherwise identical simulation, and the results, shown in Figure 4,

and are in total disagreement with the observed ion heating. The

densities, velocities and temperatures plotted in Figures 1-4 are total

quantities, summed over both ion species.

In order to demonstrate the mass-dependent-differential ion heating

caused by the instabilities, we performed simulations with proton and

alpha particle "fast" streams interacting with a proton background.

Temperatures of the individual species are shown in Figure 5 for the

proton-proton case, and in Figure 6 for the alpha-proton case. In

agreement with measurements, T /Tp 4.

IV. Microstructure after the Interaction

The multifluid approach, while it provides a measure of the

thermalization and of the relative streaming and thermal energies,

cannot give a description of the velocity distribution function. How-

ever, since we can find the dominant therma.ization mechanism from the

multifluid calculation, we can proceed to simulate that particular
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instability in a particle code6 to find the ion velocity distribution

function after thermalization. Figure 7 shows the ion distribution

before and after thermalization. In the latter case, the distribution

function is similar to the one measured by Feldman.7 One should note

that this distribution is no longer unstable, but is marginally stable,

and will persist over a collisional time scale, the ions streaming

down the field lines in a one-fluid fashion. What Feldman sees is the

result of a short wavelength (kR. << 1) instability which occurred

at the colliding streamer region and subsequently drifted away.

Conclusions

We believe that the multifluid approach outlined here is, at

this time, the most powerful tool with which a comparison of the

observations of the solar wind plasma and the various theories can

be accomplished. The model is flexible enough such that any addi-

tional processes relevant to the particular problem can be incorpor-

ated. The example.which we presented shows clearly how a combination

of multifluid and particle codes can explain most of the features

observed in colliding solar wind streamers, and it demonstrates how

erroneous conclusions will be drawn if the plasma processes are

neglected.
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Figure Captions

Fig. 1: Magnetic field profiles and total ion temperature, velocity
and density profiles at t = 0. Background streamer partly
interpenetrated by "fast" streamer. A sharp initial density
cutoff is assumed for the "fast" streamer. An initial ion
temperature of I ev. is assumed.

Fig. 2: Profiles at t = 10 seconds, for the case with plasma in-
stabilities operative.

Fig. 3: Profiles at t = 20 seconds, for the case with plasma in-
stabilities operative.

Fig. 4: Profiles at t = 20 seconds, for the case with plasma in-
stabilities turned off. Ion heating results from simple
adiabatic compression.

Fig. 5: Temperature profiles for the individual ion streams and for
the electrons at t = 5 seconds. Here a "fast" streamer
consisting of protons counterstreams with a proton back-
ground.

Fig. 6: Temperature profiles at. t =.5 seconds, for a "fast"' alpha-
particle streamer counterstreaming with a proton background.

Fig. 7: Ion velocity distribution functions before and after
thermalization via the magnetized ion-ion.two stream
instability.
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Figure 1. Initial configuration.
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Figure . With instabilities. t = 20 sec.
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Figure 5. Temperature profiles. Figure 6. Temperature profiles.
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